Delivers Canon’s ultra-high resolution diagnostic images for immediate review

- Easy to operate and achieve desired views
- Smooth, wide-range pan and tilt movement for maximum flexibility
- Exams are more efficient and comfortable for the patient

CF-1 Specifications

Type: Digital retinal camera, mydriatic

Types of photography:
- Color photography
- Fluorescein angiography (FA)
- Red-free photography
- Stereo photography (optional)

Angle of view:
- 50 degrees, 43 degrees (2x digital magnification)
- ø 15.1mm x 13.7 mm

Minimum pupil size: ø 5.2 mm (in SP mode: ø 4.3 mm)

Optical image size on the sensor:
- ø 15.1mm x 13.7 mm

Available digital cameras: Canon EOS digital SLR cameras

Resolution:
- Final pixel count depends on model of attached camera

Focusing method: Split lines adjustment

Distance adjustment:
- Working distance dots 35 mm

Working distance:
- 35 mm

Tilt angle adjustment:
- Working distance: ø 90 mm
- Right/left: 30 degrees
- Up/down: ø 15 degrees, ø 25 degrees

Power supply:
- AC 100-240V 50/60Hz 7-3A
- Normal: approx. 100 VA, Maximum: 720 VA

Operating environment:
- Temperature: 10˚C to 35˚C
- Humidity: 30% RH to 80% RH (with no condensation)

Dimensions (W x D x H):
- 320 mm x 531 mm x 566 mm (12.6 in. x 20.9 in. x 22.3 in.)
- Approx. 26 kg (57 lb.)

Power consumption:
- External type (standard): 700 VA
- Internal type (optional): 200 VA

OPTICAL ACCESSORIES:
- External eye fixation lamp
- Internal eye fixation lamp

DIOCOM COMPATIBILITY:
- DICOM Storage Service Class (SCU)
- DICOM Worklist Management Service Class (SCU)
- DICOM Modality Perforance Procedure Step (SCU)

COMPONENTS:
- CF-1 main unit
- Power supply cable
- External eye fixation lamp
- Digital camera cover
- Objective lens cap
- Dust cover
- CD-ROM (Retinal imaging control software MYD)

OPTIONAL ACCESSORIES:
- Stereo unit
- Internal eye fixation target

DICOM COMPATIBILITY
- DICOM Storage Service Class (SCU)
- DICOM Worklist Management Service Class (SCU)
- DICOM Modality Perforance Procedure Step (SCU)

CODE: 0101W224

© CANON INC. 2007

Printed in Japan

Simulated images and specifications are subject to change without notice.

Advanced Retinal Imaging Technology Meets Ultimate Ease of Use

Introducing the CF-1, a powerful high-resolution digital retinal camera that’s also comfortable and easy to use. For color, red-free imaging and fluorescein angiography.
Get the best images for the best diagnosis—quickly, easily and comfortably

In terms of image quality and workflow efficiency, Canon’s digital retinal cameras are in a class of their own. Every aspect of image capture—from the precision retinal imaging optics to the advanced digital SLR technology—has been developed in-house to create a seamless, total imaging system that provides unparalleled diagnostic performance.

The CF-1 takes this a step further with an all-new ergonomic design that makes it easier and more comfortable than ever to achieve precise images during retinal imaging. The streamlined, ergonomic design of the CF-1 is not only pleasing in appearance, it makes the camera a pleasure to operate. It’s easily adjustable to comfortably accommodate each examinee. Smooth, precision pan and tilt movement allows you to easily achieve desired views of the retina without requiring the examinee to move their gaze. Alignment and focus is easy as well, helping you to complete exams in less time.

Key features

50-degree angle of view

The high-resolution Canon optics of the CF-1 achieves wide, extreme-detail retinal images at a 50-degree angle of view. The 50-degree view angle enables easier alignment and focusing, with fewer errors and less flash flare—even with smaller pupil sizes. Additionally, only a low amount of light is needed to capture clear images.

2x digital magnification

With one push of a button on the CF-1 control panel, you can get a closer, more enlarged view of the retina for immediate review on the connected PC. “2x mode” works by automatically cropping the peripheral edge of the image so that the region of interest is larger in the frame, making it quick and easy to confirm image focus and other factors. The end result looks the same as optical magnification yet is achieved in a fraction of the time. Close-ups are exceptionally clear and detailed thanks to the high-pixel count of the integrated digital SLR camera.

Ergonomic control panel

Controls for key features—such as shutter release, lamp setting, ISO adjustment, and mode switching—are grouped together for easy, one-handed operation in darkened rooms.

Motorized chin rest

The motorized chin rest can be moved up and down to accommodate the examinee’s height using a pair of buttons located on the unit’s control panel.

Streamlined system and workflow

The efficiency of the CF-1 goes beyond image capture. The network capability and control software of the CF-1 work to streamline the entire diagnostic workflow, allowing you to conveniently review, analyze, print, store and even transmit images to remote viewing locations. The DICOM-compliant network interface enables easy integration with existing image management systems and allows connection to a variety of network configurations such as LAN or MM and PACS communication.

Simple, straightforward control software

The bundled Retinal Imaging Control Software for the CF-1 puts tools for comprehensive study management and image capture control at your fingertips, in an intuitive graphical interface that’s simple and straightforward to use. The PC-based software provides quick, easy input and access to information and images required.

Workflow of a typical exam begins with the input of patient data, which can be automatically received from a DICOM working server or manually entered. When the shutter/release button of the CF-1 is pressed, images are captured using the deeply set parameters of the attached digital SLR camera and displayed on the PC monitor for deferred review. The software’s preview tools include image magnification and adjustment controls for contrast, brightness, and other factors to aid in image confirmation. The image processing functions that are commonly used for saved images can be printed and automatically transmitted to a viewer system.